
VEHICLE DETECTION IN URBAN POINT CLOUDS WITH ORTHOGONAL-VIEW
CONVOLUTIONAL NEURAL NETWORK

Jing Huang and Suya You

University of Southern California

ABSTRACT

In this paper, we aim at detecting vehicles from the point
clouds scanned from the urban area. Our detection method
consists of a segmentation stage and a classification stage.
Prior knowledge for vehicles and urban environment is uti-
lized to help the detection process. Specifically, we incor-
porate curb detection and removal in the segmentation stage.
Moreover, our approach is able to estimate the orientation of
the candidates and use it to handle the difficult cases such as
the vehicles in the parking lot. In order to distinguish the ve-
hicles from other segments among the 3D point cloud candi-
dates, we develop three architectures of the orthogonal-view
CNN, which are based on the orthogonal view projections of
the candidates. Detailed evaluations and comparisons are per-
formed on a challenging point cloud dataset of urban area.

Index Terms— Vehicle detection, point cloud, convolu-
tional neural network, orthogonal view

1. INTRODUCTION

Vehicle detection could be seen as a basic task in a variety of
applications, including urban modeling at a fine level [1, 2],
robot navigation and autonomous driving. Previous works
were mostly conducted on the images or videos. For point
clouds, the standard approach to vehicle detection is object-
based, which involves two steps: candidate generation and
verification. For candidate generation, Patterson et al. [3]
used spin-image to classify the points and then perform clus-
tering, However, their method only deals with cars parking
along the roads. Yao et al. [4] apply the vehicle-top detec-
tion to identify the candidates. Velizhev et al. [5] use domain
knowledge to generate the hypotheses, while our method does
not rely on the street axes as they do. To verify the candidates,
one way is to perform matching process based on local/global
descriptors with the templates [3, 6]; another way is to com-
pute a few statistics from the candidates [7, 8]; feature voting
could also be applied [5]. Unlike their methods, we base the
classification on the straightforward visual appearance with-
out hand-crafted descriptors. Golovinskiy et al. [1] applied a
generic shape-based 3D object detection framework, but the
emphasis was on the pole-like objects, and the results for cars
were weaker since they did not utilize the properties of the

Fig. 1. System overview.

vehicles. Yao [7] compared two methods for vehicle extrac-
tion and showed that 3D method has more accurate results
than the grid-cell-based method. They used SVM with only
five attributes in the classification step, which is capable of
dealing with simpler cases, but might fail in the complicated
environments.

On the other hand, the deep learning technique has
achieved a great success in image classification recently.
To this end, we apply the deep CNN on the orthogonal-view
information from the objects. Our detection and classifica-
tion system is depicted in Figure 1. The method begins with
the removal of large-scale background objects including the
terrain, the upper part of the buildings and the curbs. We
then exploit the knowledge-based segmentation to generate
the candidates. The orientation of the vehicles is a useful
yet robust cue, thus plays vital roles in fine segmentation
and classification. We further introduce a gap segmentation
method for the difficult case of parking lots, which uses the
vehicle orientation to limit the number of gap examinations.
Finally, we compute the three views of the objects with the
orientation and classify them in a trained CNN with orthogo-
nal view projections as input. Note that most 3D extensions
of deep neural networks have been toward the temporal do-
main [9]. There are also a few attempts to incorporate the
multi-view information in the deep model [10]. However,
they focus on face recognition and reconstruction of multiple
views. Therefore, the major contributions of our work are:

(1) We extend the deep learning approach from the 2D
image to the 3D domain, by proposing several orthogonal-
view-based architectures of CNN for classification of 3D
point cloud data. While our focus is on the vehicles, the
classification framework is generic and could be applied to
any other 3D detection task.

(2) We construct a novel system for segmenting and de-
tecting 3D objects, especially the vehicles, in the urban area,
including knowledge-based techniques such as curb removal
and gap segmentation for vehicles on the parking lots.



2. LARGE-SCALE CONNECTION REMOVAL

2.1. Ground and Building Removal

Most points in the data are in fact the ground points, which
often connect everything together. We remove the ground
through the following normal-based algorithm. Given the in-
put point cloud P , we first compute the normal for each point
based on the points lying in its neighborhood. We extract
all points with the z component of their normals larger than a
threshold θG. Then, we perform the region growing algorithm
within these points with upright normals. The ground point
set is defined as the union of all connected components with
more than 5000 points, so as to avoid removing the top sur-
face of the vehicles. The upper parts of the buildings that are
above the local ground level by 10 meters are also removed.

2.2. Curb Removal

The vehicles are typically seen either on the roads or in the
parking lots. Many vehicles on the road are parking along the
road side, namely the curbs. Our approach is able to remove
the curbs so that the clusters along the curbs are disconnected
from each other.

In fact, the problem is similar to the linear segment de-
tection problem. We apply the principal component analy-
sis on the points close to the ground level, and extract those
points with linear properties, i.e., one of the eigenvalue is
much larger than the other two eigenvalues.

3. KNOWLEDGE-BASED SEGMENTATION

3.1. Adaptive Segmentation

As large-scale background is removed, it’s natural to perform
the clustering. However, the clusters would be too big with
a large margin, while the smaller margin could result in the
over-segmentation of the vehicles where the scan is incom-
plete or sparse. Therefore, we apply the adaptive segmenta-
tion method [11], which starts with a large threshold, clusters
once, then multiplies the threshold with a decay factor of 0.9
and performs clustering again on the large clusters. This pro-
cess is repeated until the number of points in each cluster is
smaller than a predefined value.

3.2. Orientation Estimation

With the previous steps, while few cars are wrongly removed,
the vehicles in the parking lots are usually connected by
noises. We notice that the normal distribution would be
maximized at three orthogonal directions, one of which is
upright, for either a single vehicle or multiple adjacent ve-
hicles in parking lot or on the street. Therefore, we extract
the maximum of the horizontal normal distribution histogram
to solve the problem. Specifically, we compute the normals

(a) (b)

Fig. 2. Results for cluster orientation estimation. (a) Orien-
tation estimation result for candidate clusters along the road.
The red line is the principal axis and the blue line is secondary
axis. The estimation is pretty close to human perception for
the cars. (b) For clusters containing multiple cars (typically
in the parking lots), the orientation can be estimated as well.

for all points in the cluster. Then, we project the ones that
are pointing to the near-horizontal directions (nz < 0.2), to
the horizontal plane. After that, we quantize the directions
and make a histogram of the number of normals lying in each
bin (the ones with opposite directions are added up). Finally,
the bin with the maximum number of normals is treated as
the principal bin, and the direction perpendicular to it as the
secondary bin. The accurate principal direction is computed
as the average of the normalized projected normals in the
principal bin and the adjacent bins. Figure 2 shows the results
of orientation estimation.

3.3. Gap Segmentation

Using the orientation information, we can now fit a more
accurate bounding box and improve the segmentation result,
since the cars typically have rectangular shapes. Furthermore,
when viewing from one of the estimated axes, gaps could be
observed between the nearby cars. Therefore, we develop the
following gap detection method for each cluster: (1) Com-
pute the principal and secondary axes; (2) Along each axis,
compute the maximum local height within a quantization
unit (interval); (3) Record if the heights of the intervals are
larger than a threshold; (4) If several consecutive intervals are
higher than the threshold (bounded by intervals lower than
the threshold), we consider it as a possible block.

Then, we combine the feasible consecutive intervals.
Specifically, if we have M and N feasible consecutive in-
tervals in the principal and the secondary directions, respec-
tively, we can generate M × N sub-regions from the region.
Figure 3 shows some gap segmentation results.

Finally, the separated area is segmented again using a
more accurate local orientation, since the orientation of a
larger cluster could be slightly different from that of its sub-
clusters. We’d also like to remove areas outside the boxes
or boxes that are almost empty. This is done through the
iterative version of the algorithm, which starts with the pro-
cess of orientation estimation and gap segmentation, then
filters the generated candidates and iterates the process on the
remaining sub-clusters until no significant change is made.



(a) (b)

Fig. 3. Results for gap segmentation. In (a), the large cluster
is divided into 1× 5 sub-regions. Also, the ground that failed
to be removed is correctly excluded in the result. In (b), the
connected cars along the road is separated.

Fig. 4. Orthogonal-View CNN with fusion at the fully-
connected hidden layer, which performs the best among the
three architectures. All networks have 6 layers.

4. CLASSIFICATION USING OV-CNN

Once the vehicle candidates are segmented in the previous
stages, we employ the learning-based classifier to distinguish
between the vehicle clusters and the non-vehicle clusters,
mainly including facades, bushes, trees, poles and roofs.

4.1. Orthogonal View Projection

For each instance, we generate 3 images (n × n pixels) from
3 orthogonal views on XY-plane, XH-plane and YH-plane.
Note that we restrict each dimension to be no more than l
meters. The intensity is proportional to the number of points
lying in the corresponding bins. The center of the three views
is located at (x̄, ȳ, zmin+ l), where x̄ and ȳ are the average of
the coordinates. One of the major difficulties in the 3D projec-
tion is that the direction is unknown. However, since we have
estimated principal and secondary orientations of the clusters
in Section 3.2, we can directly employ them as the projec-
tion directions. A brief test showed that the classifier using
the oriented projection performs better than the projection us-
ing world coordinates. This is reasonable since we focus on
vehicles, which have well-defined orientations.

4.2. Network Architecture

In terms of the layout of a single-view network, our work
is based on the success of LeNet [12]. Several structures of
CNN that fuse information of orthogonal views are explored.

CNN Combined with Voting. This is the simplest ar-
chitecture, which counts on votes cast by the classification
result of the three identical CNNs on separate views. This
acts as a baseline method for evaluating the effect of combi-
nation of information from different views. The architecture
could be represented as 3 × (C(nc1, dc1, fc1) − P (np1) −
C(nc2, dc2, fc2)−P (np2)−FC(nf1)−LR(nf2))−Σ≥2(3).
Here C(n, d, f) represents a convolutional layer with input
size n × n and d filters with size f × f ; P (n) represents a
max-pooling layer with input size n × n; FC(n) represents
a fully-connected layer with input size n; LR(n) represents
a logistic regression layer with input size n; and Σ(n) rep-
resents a simple summing operation of the outputs from the
logistic regression layers. In other words, the final output is
based on the sum of the outputs (0 or 1) from three parallel
single-view CNNs, and gets activated only when at least two
single-view CNNs output 1. The CNNs are trained using all
three views without knowing exactly which direction the view
is projected, thus sharing identical weights.

Fused CNN at LR Layer. In this architecture, the outputs
of the fully-connected layers do not explicitly decide the class
of each view, but rather be concatenated and used as the input
for the one single final logistic regression layer. In this way,
different views have the chance to affect each other in the very
last step. Using the notations above, the architecture could be
written as 3×(C(nc1, dc1, fc1)−P (np1)−C(nc2, dc2, fc2)−
P (np2)− FC(nf1))− LR(nf2 × 3).

Fused CNN at Fully-Connected Hidden Layer. In
this architecture, the outputs of the second max-pooling
layers are not used in the decision of each view, but be
concatenated and used as the input for one unified fully-
connected hidden layer. The architecture could be written as
3×(C(nc1, dc1, fc1)−P (np1)−C(nc2, dc2, fc2)−P (np2))−
FC(nf1 × 3)− LR(nf2) (Figure 4).

5. EXPERIMENTS

5.1. Experimental Protocol

We evaluate our detection system on a large Lidar point cloud
dataset of the urban area of Ottawa [1]. The data was a fu-
sion of one airborne scanner and four car-mounted scanners,
which provides higher density along the streets but lower den-
sity far from the streets (e.g., parking lots). We implement the
networks using the Theano library [13] and train them with
the Stochastic Gradient Descent method. The size of mini-
batch is 10 examples (30 views), and the learning rate is 0.1
with a decay rate of 0.95. The training and validation dataset
containing 436 examples is annotated from segmented clus-
ters outside the 50 blocks of testing dataset. We implement
an automatic program to evaluate the methods. We manually
annotated 50 trunks of data of 100m×100m area, containing
728 instances of cars and over 30 million points. If a detected
instance has an overlapping percentage of 50% with a ground



ID Method TP FP Precision Recall
0 Baseline 58 39 54.2% 58.0%
1 0+Curb 70 43 56.9% 70.0%
2 1+Adaptive 88 89 47.1% 88.0%
3 2+Gap 93 89 48.4% 93.0%

Table 1. Comparison of segmentation result.

dc1/dc2 10 20 30 40
10 80.0% 80.0% 80.0% 77.7%
20 80.8% 83.8% 82.3% 80.8%
30 78.5% 79.2% 78.5% 77.7%

Table 2. Evaluation result of different numbers of kernels in
the two convolutional layers.

truth instance, we count it as a correct detection.

5.2. Evaluation of Segmentation

Table 1 demonstrates the progress of segmentation methods,
including the baseline method using ground removal and clus-
tering and three incremental methods (curb removal, adaptive
segmentation and gap detection).

5.3. Parameter Selection

We experimented with a few parameter settings. For clarity,
we only list the parameter evaluation for the OV-CNN fused at
the FC layer, which is superior in the comparison. The param-
eter selection process for the other two networks is similar.

Kernels. We fix the kernel size to be 5 × 5 and evaluate
how different numbers of kernels affect the performance. We
can see from Table 2 that the best performance is achieved
when dc1 = dc2 = 20.

Patch size. To determine the visual patch size, we fix the
two pairs of kernels that perform the best in the evaluation
above. Table 3 shows the effect of how different patch size
affect the performance. We can see that when the input view
patch size nc1 = 28, the best performance is achieved.

5.4. Evaluation of Classification Architectures

To evaluate the performance of the three architectures, we ap-
ply the best parameters selected from the previous subsec-

(dc1/dc2)/nc1 24 28 32 36
(20/20) 80.0% 83.8% 80.0% 80.0%
(20/30) 78.5% 82.3% 80.8% 70.8%

Table 3. Evaluation of various view patch sizes. nc1 must be
divisible by 4 to satisfy the constraints.

Classifier SVM Voting LR-Fused FC-Fused
Correct% 77.5% 75.9% 80.0% 83.8%

Table 4. Comparison of three CNN architectures and SVM.

(a) (b)

(c) (d)

Fig. 5. Vehicle detection results. The vehicles are highlighted
in red color. (a) shows the example of vehicles parking along
the street. (b) and (c) show the example of large parking lots.
(d) shows that our method could handle both cars and trucks.

tion and compare the results. We also apply SVM on the
concatenated representation of the three views as the base-
line method. From Table 4 we can see that, compared to
SVM, Voting-based CNN does not show better performance,
while the two fused architectures give better results. The best
OV-CNN is the one that fuses at the fully-connected hidden
layer. This is reasonable since the connections among differ-
ent orthogonal views are more likely to be modeled through
the early-fused layers. The best architecture turn out to be
3×(C(28, 20, 5)−P (24)−C(12, 20, 5)−P (8))−FC(16×
3)− LR(300). Figure 5 shows the final detection results. 1

The whole system is highly efficient. For one block of
data (100m× 100m), the segmentation step takes less than 5
minutes, and the classification step takes less than 1 minute.

6. CONCLUSION

In this work, we develop a CNN that could deal with 3D point
cloud classification using orthogonal views. Combining it
with knowledge-based segmentation techniques, we can effi-
ciently perform vehicle detection from the urban point clouds.
We evaluate and demonstrate the performance of our method
through detailed experiments. Although this work focuses on
vehicles, the OV-CNN architecture could easily be applied to
other 3D object detection and classification tasks.

1We have included a supplementary MP4 file which contains inter-
mediate and final results of our method. This will be available at
http://ieeexplore.ieee.org.



7. REFERENCES

[1] Aleksey Golovinskiy, Vladimir G Kim, and Thomas
Funkhouser, “Shape-based recognition of 3d point
clouds in urban environments,” in Computer Vision,
2009 IEEE 12th International Conference on. IEEE,
2009, pp. 2154–2161. 1, 3

[2] Nico Cornelis, Bastian Leibe, Kurt Cornelis, and Luc
Van Gool, “3d urban scene modeling integrating recog-
nition and reconstruction,” International Journal of
Computer Vision, vol. 78, no. 2-3, pp. 121–141, 2008.
1

[3] Alexander Patterson IV, Philippos Mordohai, and Kostas
Daniilidis, “Object detection from large-scale 3d
datasets using bottom-up and top-down descriptors,” in
Computer Vision–ECCV 2008, pp. 553–566. Springer,
2008. 1

[4] Wei Yao, Stefan Hinz, and Uwe Stilla, “Automatic ve-
hicle extraction from airborne lidar data of urban areas
aided by geodesic morphology,” Pattern Recognition
Letters, vol. 31, no. 10, pp. 1100–1108, 2010. 1

[5] Alexander Velizhev, Roman Shapovalov, and Konrad
Schindler, “Implicit shape models for object detection
in 3d point clouds,” Proc. ISPRS Congr, pp. 1–6, 2012.
1

[6] Bogdan Matei, Ying Shan, Harpreet S Sawhney, Yi Tan,
Rakesh Kumar, Daniel Huber, and Martial Hebert,
“Rapid object indexing using locality sensitive hashing
and joint 3d-signature space estimation,” Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on,
vol. 28, no. 7, pp. 1111–1126, 2006. 1

[7] Wei Yao and Uwe Stilla, “Comparison of two methods
for vehicle extraction from airborne lidar data toward
motion analysis,” Geoscience and Remote Sensing Let-
ters, IEEE, vol. 8, no. 4, pp. 607–611, 2011. 1

[8] Jixian Zhang, Minyan Duan, Qin Yan, and Xiangguo
Lin, “Automatic vehicle extraction from airborne lidar
data using an object-based point cloud analysis method,”
Remote Sensing, vol. 6, no. 9, pp. 8405–8423, 2014. 1

[9] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu, “3d con-
volutional neural networks for human action recogni-
tion,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 35, no. 1, pp. 221–231, 2013. 1

[10] Zhenyao Zhu, Ping Luo, Xiaogang Wang, and Xiaoou
Tang, “Multi-view perceptron: a deep model for learn-
ing face identity and view representations,” in Advances
in Neural Information Processing Systems, 2014, pp.
217–225. 1

[11] Jing Huang and Suya You, “Segmentation and match-
ing: Towards a robust object detection system,” in
Winter Conference on Applications of Computer Vision
(WACV), 2014. 2

[12] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998. 3

[13] James Bergstra, Frédéric Bastien, Olivier Breuleux, Pas-
cal Lamblin, Razvan Pascanu, Olivier Delalleau, Guil-
laume Desjardins, David Warde-Farley, Ian Goodfellow,
Arnaud Bergeron, et al., “Theano: Deep learning on
gpus with python,” in NIPS 2011, BigLearning Work-
shop, Granada, Spain, 2011. 3


